skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Saeed Soori, Konstantin Mishchenko"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In this paper, we consider distributed algorithms for solving the empirical risk minimization problem under the master/worker communication model. We develop a distributed asynchronous quasi-Newton algorithm that can achieve superlinear convergence. To our knowledge, this is the first distributed asynchronous algorithm with superlinear convergence guarantees. Our algorithm is communication-efficient in the sense that at every iteration the master node and workers communicate vectors of size 𝑂(𝑝), where 𝑝 is the dimension of the decision variable. The proposed method is based on a distributed asynchronous averaging scheme of decision vectors and gradients in a way to effectively capture the local Hessian information of the objective function. Our convergence theory supports asynchronous computations subject to both bounded delays and unbounded delays with a bounded time-average. Unlike in the majority of asynchronous optimization literature, we do not require choosing smaller stepsize when delays are huge. We provide numerical experiments that match our theoretical results and showcase significant improvement comparing to state-of-the-art distributed algorithms. 
    more » « less